Para todas as pessoas que estudam um mínimo de matemática, há sempre algumas perguntas insistentes: “Qual a aplicação prática da matemática, de todas as suas equações e contas?” “Para que serve tudo isso?”
É bem verdade que a forma como se estuda a matemática durante a vida escolar nos leva a pensar desse modo. Não se entende onde e quando a fórmula de Báskara vai ser útil para a vida e não se vê a razão de calcular sistemas ou ainda frações que “a olho nu” parecem apenas úteis no plano teórico.
Mas a Matemática não é apenas uma quantidade imensa de cálculos e equações. Ela é uma ciência complexa e como tal faz parte da vida prática do ser humano em todos os momentos, ainda que essa presença pareça imperceptível.
Os mecanismos que coordenam o mundo em geral têm certas regras que são impossíveis de serem descobertas sem a matemática. Mas isso não quer dizer que essa Matemática é feita de equações, contas ou qualquer parte da Matemática acadêmica. Tratam-se de leis naturais que existiriam mesmo sem o conhecimento matemático teórico. Mas então qual a relação da Matemática com a vida prática?
É bastante simples entender. A existência dessas leis naturais é independente, mas só a Matemática nos dá a oportunidade de entendê-las e agir sobre as mesmas. Ela nos dá a possibilidade de interagir com a natureza, modificando-a em nosso favor. Para ficar mais fácil de entender, vamos usar um exemplo prático.
Para um avião voar com estabilidade e se locomover, há a necessidade de a propulsão dos motores ser igual à pressão da resistência do ar. Sem essa propriedade, não haveria a possibilidade de locomoção aérea. Mas como saber quando essas duas propriedades entram em igualdade? É nessa tentativa de descobrir que a Matemática exerce o seu papel. É ela que vai calcular qual deverá ser a propulsão dos motores.
Este é um dos muitos exemplos que nos faz ver a importância das leis matemáticas. Ela está constantemente interagindo com a Física, proporcionando-nos o desenvolvimento tecnológico, um conhecimento mais aprofundado da natureza e do universo em geral.
Mais um exemplo de ciência que está diretamente ligada à matemática é a astronomia. Desde a antiguidade os astrônomos lançam mão da matemática para fazerem suas observações. Aliás, foi através da astronomia que a matemática se desenvolveu muito no império árabe.
Os astrônomos desse período descobriram um modo de calcular a distância da Terra até outros astros. Esse modo era baseado nos estudos de ângulos e retas. Foi assim que surgiu a trigonometria, área da matemática muito utilizada até hoje.
Quando analisamos dados como distância entre um astro e outro, o diâmetro de um planeta ou também o tempo estimado para chegar até algum lugar no espaço, há de se lembrar que o responsável pela obtenção de todos esses valores não é algum satélite ou similar. Todos esses valores são calculados através de equações algébricas.
Além da astronomia, várias outras áreas presentes no nosso dia a dia (até mais que a astronomia) estão diretamente relacionadas com a Matemática. Um bom exemplo é a estatística, área que já é considerada uma ciência a parte da matemática, mas inevitavelmente forte ligação com a mesma.
Ainda que a estatística seja uma ciência exata voltada para a vida prática e social, ela não é perfeita, ou seja, em qualquer cálculo estatístico há também a probabilidade de erro. O seu principal objetivo é fazer entender de uma maneira mais prática alguns fatores como vendas, taxas, médias, probabilidades, etc. Isso é feito em 3 etapas básicas para uma pesquisa estatística: levantamento, organização e análise dos dados colhidos, sendo nesta última que a matemática entra com mais intensidade. Depois de já ter os dados colhidos e organizados, o pesquisador deve analisar os mesmos com a finalidade de chegar a um resultado concreto.Vejamos um exemplo. Para descobrir a média de venda anual de um produto qualquer:
Mês | Venda (Unidades) |
Janeiro | 510 |
Fevereiro | 400 |
Março | 512 |
Abril | 321 |
Maio | 399 |
Junho | 495 |
Julho | 352 |
Agosto | 478 |
Setembro | 350 |
Outubro | 301 |
Novembro | 552 |
Dezembro | 740 |
Fonte: Dados hipotéticos
A média de venda anual é de 442.5 unidades por mês. Esse valor permite ao fabricante calcular seus possíveis lucros e organizar, assim, o orçamento dessa empresa.
Os meses de menor número de vendas são abril e outubro, e os que têm maior vendagem são novembro e dezembro. A partir disso, o fabricante pode planejar estratégias publicitárias nos meses corretos.
Esses dados permitem ao pesquisador obter varias informações, que serão de grande utilidade para o fabricante do produto.
Este exemplo prático nos permite observar como a matemática interage com a sociedade. Ela nos permite, por exemplo, fazer previsões ou calcular valores úteis para planejamentos. O seu estudo é inevitável para a maioria das profissões de nível superior, inclusive nas ciências humanas. Estas estudam a chamada “matemática instrumental” que varia de uma área para outra, não como grandezas independentes, mas como partes da matemática tendo utilidade de diversas formas.
Nas ciências naturais, vemos a matemática presente também na química. Com certeza ela não seria tão exata se não tivéssemos um sistema de pesos e medidas eficiente. Experiências práticas na área da química seriam bem mais vagas. Isso afetaria também a área da medicina, pois sem esta exatidão os medicamentos estariam sendo feitos de forma bastante precária e qualquer erro na quantidade de produto a ser usada poderia comprometer o tratamento dos pacientes.
Estudantes e pesquisadores de química sabem que essa ciência é praticamente dependente da matemática. Em qualquer resultado que se queira chegar, há a necessidade de calcular algum valor, ou seja, das equações químicas.
Não apenas em cálculos ou pesagens, mas áreas um pouco mais complexas da matemática também estão presentes na Química, como o logaritmo. Para conseguir alguns resultados em química, é necessário utilizar o logaritmo, como no cálculo do pH de uma substância qualquer utiliza-se a seguinte fórmula:
PH = - log [ H ]
Em uma equação química como esta temos, inevitavelmente, que usar a matemática. É ela que vai nos dar a possibilidade de saber se uma substância é considerada básica, neutra ou ácida, por exemplo.
Dentre outros exemplos que podemos citar sobre a utilização da matemática, utilizaremos a economia. Não apenas através de números concretos, mas a economia usa muito da álgebra para calcular os índices econômicos importantíssimos para um país. Para demonstrar essa utilização, usaremos um índice muito comentado ultimamente, o RISCO - PAÍS.
Esse valor é calculado com referência nos títulos do tesouro americano. Na prática, o risco de investir no país só compensa se os juros estiverem sendo negociados a uma taxa de 17,7 pontos acima do título americano. Por exemplo, se um título americano fechar com juros de 5,3% ao ano, o brasileiro deverá ter uma taxa de 23% ao ano.
Investimento, câmbio, taxas de juros, valores, etc. Sem eles não haveria nem razão de estudar economia. E sem a matemática, não haveria maneira de calculá-los. É ela influenciando inclusive nas finanças de um país.
Na construção civil, a Matemática é ferramenta constante. Engenheiros, arquitetos tem essa ciência como principal instrumento no desenvolvimento de projetos de edifícios, casas, monumentos, etc.
Uma estrutura de um edifício, quando é mal projetada, tem grandes chances de vir a desabar ou no mínimo ter problemas estruturais. Existem vários casos em que a má projeção da construção faz com que o edifício tenha problemas de rachaduras ou ainda problemas mais graves como o desmoronamento.
Nessa área, uma parte da matemática muito utilizada é a trigonometria, ou seja, o estudo dos ângulos. Esses são essenciais para projetos e execução de construções.
Sem a matemática e o desenvolvimento da trigonometria, seria possível que estivéssemos vivendo em construções muito mais precárias, talvez até com outro tipo de material.
Em suma, a matemática está presente no nosso cotidiano. Possivelmente pouquíssimo desenvolvimento tecnológico teria acontecido sem a matemática e, descoberta da mesma. Descoberta ou invenção???
Esse é um tema bastante polêmico no estudo da matemática, embora não seja muito discutido nas áreas que já citamos, pois elas usam a parte prática da matemática, não se interessando em sua origem ou explicações teóricas. Talvez não haja espaço para essa discussão na Matemática Instrumental, mas os estudiosos da Matemática como ciência têm esse assunto presente constantemente no estudo dela.
Depois de discutir sobre as ciências que têm a Matemática como grande ferramenta, discutiremos também sobre a origem da ciência matemática, pois, depois de saber que a matemática está presente nas nossas vidas constantemente, é interessante saber também como ela surgiu e maiores discussões que estão em torno dela.
Em relação à origem matemática, existem duas correntes que têm explicações diferentes. A primeira diz que a matemática foi descoberta, ou seja, tem existência independente, como se ela já fizesse parte do universo e o único papel do homem foi descobri-la. A outra corrente afirma que a matemática foi inventada pelos seus estudiosos e só passou a fazer parte do mundo a partir do momento que alguém passou a estudá-la.
Os argumentos são os mais variados possíveis, ainda que a grande maioria deles esteja voltada para a afirmação de que a matemática foi descoberta. O mais comum desses argumentos é que muitas das equações e fórmulas foram descobertas por mais de uma pessoa ao mesmo tempo, sem nenhum tipo de contato entre elas. Isso provaria, na concepção dos que acreditam na descoberta da matemática, que a matemática já existe e essas pessoas apenas descobriram-na.
Um exemplo disso foi a descoberta do cálculo diferencial. Dois matemáticos, Newtom e Leibniz, descobriram-no ao mesmo tempo e por algum período houve discussões em torno de quem seria realmente o descobridor. Essa disputa causou uma série de divergências entre os dois.
Na Grécia antiga, os matemáticos acreditavam na teoria da descoberta. Eles tinham uma idéia de que toda a matemática estava “guardada” em um lugar (não necessariamente físico) chamado Holos, apenas esperando para ser descoberta. Os árabes também acreditavam que a matemática estava no mundo superior.
Do lado contrário, aqueles que acreditam na criação da matemática argumentam que todo o trabalho de elaborar uma equação ou algo similar é mérito de quem a faz, não da Matemática por ela mesma, como uma coisa independente de tudo. Eles acham impossível ter tanta complexidade já existente de modo passível, na “espera”.
Outros ainda preferem ver a matemática como uma forma de arte e como tal sendo fruto da criação de pessoas com uma capacidade “artística”. Esses se consideram artistas, ainda que o número de adeptos dessa linha de pensamento seja pequeno.